Forest biotechnology
(obiettivi)
AIMS The course will introduce students to principles and experimental approaches, continuously evolving, of plant biotechnology. This course is intended to strengthen basic knowledge on plant biotechnology applied to forest trees (green biotechnologies, categories of biotech processes and products, model plants, plant tissue culture, recombinant methods, molecular tools), by offering a framework to approach current scientific problems (i.e. the use of transgenic trees) and also provide a basis for specialized studies in the field of in vitro clonal propagation, tree breeding and functional genomics. In the laboratory classes, students will perform some of the techniques currently used to obtain micro-propagated plants, callus cultures, and protoplasts of forest species, and to detect genetic variation. The key concepts of the course will be integrated in a series of case studies, and students will enhance their ability to apply them to novel situations in problem-solving sessions, especially devoted to the Mediterranean region.
EXPECTED LEARNING RESULTS
Knowledge and understanding: at the end of the course students will have a thorough knowledge of the basic principles of forest biotechnology and of the modern techniques to obtain technological products (in vitro material characterized by clonal fidelity or somaclonal variants, secondary metabolites, transgenic and cisgenic trees, molecular tools for the study of genetic variability). Finally, they will have gained the ability to understand the potential use of biotech trees in order to increase the productivity of forest plantations also in disadvantaged environments (biotic and abiotic stress) or to use biotech trees for the recovery of barren lands (salinity, pollution);
Applying knowledge and understanding: students will be encouraged to take advantage of the knowledge acquired during the course and during laboratory practice in order to apply them to specific issues such as, for example, the propagation of ameliorated genotypes or somaclonal variants resistant to biotic or abiotic stress or characterized by high wood productivity, as well as the conservation of endangered species or provenances;
Making judgements: Students will be able to interpret and discuss scientific papers presented during class and be able to identify in them the highlights and key points;
Communication skills: during the lessons it will be stimulated students' ability to think and discuss about the topics covered as well as the comparison of opinions to develop their communication skills. These skills will then be tested in the examination;
Learning skills: students will be able to expose and develop scientific issues related to the course. The active involvement of students through oral classroom discussions and experiences in the laboratory practices, will develop that skill.
|
Codice
|
16365 |
Lingua
|
ENG |
Tipo di attestato
|
Attestato di profitto |
Crediti
|
6
|
Settore scientifico disciplinare
|
AGR/05
|
Ore Aula
|
40
|
Ore Laboratorio
|
8
|
Attività formativa
|
Attività formative caratterizzanti
|
Canale Unico
Fruisce da
|
17697_1 Forest biotechnology in SCIENZE FORESTALI E AMBIENTALI (LM-73) LM-73 KUZMINSKY Elena
(programma)
The class and lab. activities lectures will be focused on the following groups of topics/abilities. - General introduction to plant biotechnology: history, global significance of modern plant biotechnology, biotech trees; - Model plants for tree species: the need of a model plant for tree species; - Vegetative propagation and tissue culture (tree cloning, micropropagation, cryopreservation, callus culture, haploid plants, protoplast isolation, production of secondary metabolites); - General introduction to the genetically modified trees; Methods of genetic transformation of forest trees (Agrobacterium, biolistic, and electroporation) - Applications of recombinant DNA technology for the improvement of forest trees - General introduction to the Omics sciences (genomics, proteomics and metabolomics) - Sequencing of tree species (history and main methodologies), Next generation sequencing - Molecular markers history, molecular markers currently used in plant biotechnology - Marker Assisted Selection
(testi)
1. Plant Cell Culture, essential methods (2010). Edited by M.R. Davey and P. Anthony. Wiley-Blackwell. 2. Tree biotechnology (2014). Edited by K. G. Ramawat, J. M. Mérillon, M. R. Ahuja. CRC Press. 3. Plant Biotechnology and Agriculture: Prospects for the 21st Century (2012). Edited by Altman A and Hasegawa PM. Accademic Press. 4. Plants, genes, and Crop Biotechnology (2003). Edited by M.J. Chrispeels & D.E. Sadava. Jones and Bartlett publishers. Non-attending students are encouraged to contact the teacher for information about the program, teaching materials, and how to evaluate the benefit.
|
Date di inizio e termine delle attività didattiche
|
Dal 26/09/2021 al 20/01/2022 |
Modalità di erogazione
|
Tradizionale
|
Modalità di frequenza
|
Non obbligatoria
|
Metodi di valutazione
|
Prova orale
|
|
|