Insegnamento
|
CFU
|
SSD
|
Ore Lezione
|
Ore Eserc.
|
Ore Lab
|
Ore Studio
|
Attività
|
Lingua
|
17697 -
Forest genetics and Biotechnology
|
|
-
Forest biotechnology
(obiettivi)
AIMS The course will introduce students to principles and experimental approaches, continuously evolving, of plant biotechnology. This course is intended to strengthen basic knowledge on plant biotechnology applied to forest trees (green biotechnologies, categories of biotech processes and products, model plants, plant tissue culture, recombinant methods, molecular tools), by offering a framework to approach current scientific problems (i.e. the use of transgenic trees) and also provide a basis for specialized studies in the field of in vitro clonal propagation, tree breeding and functional genomics. In the laboratory classes, students will perform some of the techniques currently used to obtain micro-propagated plants, callus cultures, and protoplasts of forest species, and to detect genetic variation. The key concepts of the course will be integrated in a series of case studies, and students will enhance their ability to apply them to novel situations in problem-solving sessions, especially devoted to the Mediterranean region.
EXPECTED LEARNING RESULTS
Knowledge and understanding: at the end of the course students will have a thorough knowledge of the basic principles of forest biotechnology and of the modern techniques to obtain technological products (in vitro material characterized by clonal fidelity or somaclonal variants, secondary metabolites, transgenic and cisgenic trees, molecular tools for the study of genetic variability). Finally, they will have gained the ability to understand the potential use of biotech trees in order to increase the productivity of forest plantations also in disadvantaged environments (biotic and abiotic stress) or to use biotech trees for the recovery of barren lands (salinity, pollution);
Applying knowledge and understanding: students will be encouraged to take advantage of the knowledge acquired during the course and during laboratory practice in order to apply them to specific issues such as, for example, the propagation of ameliorated genotypes or somaclonal variants resistant to biotic or abiotic stress or characterized by high wood productivity, as well as the conservation of endangered species or provenances;
Making judgements: Students will be able to interpret and discuss scientific papers presented during class and be able to identify in them the highlights and key points;
Communication skills: during the lessons it will be stimulated students' ability to think and discuss about the topics covered as well as the comparison of opinions to develop their communication skills. These skills will then be tested in the examination;
Learning skills: students will be able to expose and develop scientific issues related to the course. The active involvement of students through oral classroom discussions and experiences in the laboratory practices, will develop that skill.
-
KUZMINSKY Elena
( programma)
The class and lab. activities lectures will be focused on the following groups of topics/abilities. - General introduction to plant biotechnology: history, global significance of modern plant biotechnology, biotech trees; - Model plants for tree species: the need of a model plant for tree species; - Vegetative propagation and tissue culture (tree cloning, micropropagation, cryopreservation, callus culture, haploid plants, protoplast isolation, production of secondary metabolites); - General introduction to the genetically modified trees; Methods of genetic transformation of forest trees (Agrobacterium, biolistic, and electroporation) - Applications of recombinant DNA technology for the improvement of forest trees - General introduction to the Omics sciences (genomics, proteomics and metabolomics) - Sequencing of tree species (history and main methodologies), Next generation sequencing - Molecular markers history, molecular markers currently used in plant biotechnology - Marker Assisted Selection
( testi)
1. Plant Cell Culture, essential methods (2010). Edited by M.R. Davey and P. Anthony. Wiley-Blackwell. 2. Tree biotechnology (2014). Edited by K. G. Ramawat, J. M. Mérillon, M. R. Ahuja. CRC Press. 3. Plant Biotechnology and Agriculture: Prospects for the 21st Century (2012). Edited by Altman A and Hasegawa PM. Accademic Press. 4. Plants, genes, and Crop Biotechnology (2003). Edited by M.J. Chrispeels & D.E. Sadava. Jones and Bartlett publishers. Non-attending students are encouraged to contact the teacher for information about the program, teaching materials, and how to evaluate the benefit.
|
6
|
AGR/05
|
48
|
-
|
-
|
-
|
Attività formative caratterizzanti
|
ENG |
-
Forest genetics
(obiettivi)
OBIETTIVI Fornire allo studente conoscenze sulla natura, modificazione, funzione e trasmissione dell'informazione genetica negli organismi viventi, con particolare riferimento agli alberi forestali. Far conoscere allo studente le principali metodologie per lo studio della variabilità genetica nelle specie forestali ed il suo utilizzo nel miglioramento genetico.
RISULTATI ATTESI Dopo aver completato il corso, gli studenti devono dimostrare di: 1) aver acquisito gli strumenti per l'analisi della trasmissione e della ricombinazione dei caratteri ereditari; 2) essere in grado di interpretare i risultati di incroci genetici; 3) aver acquisito conoscenze sui meccanismi molecolari della regolazione genica negli alberi forestali; 4) aver acquisito i principi e i metodi per lo studio della variabilità genetica degli alberi forestali; 5) essere in grado di analizzare gli effetti dell'inbreeding e dei fattori evolutivi sulla struttura genetica delle popolazioni naturali di specie forestali; 6) aver acquisito i principi e metodi per lo studio ed analisi dei caratteri quantitativi nelle specie forestali; 7) aver acquisito conoscenze sui principi di base del miglioramento genetico degli alberi forestali.
-
CIAFFI Mario
( programma)
FOREST GENETICS
Il corso è organizzato in quattro sezioni principali: 1) richiami sui principi di genetica di base (genetica mendeliana e molecolare); 2) genetica di popolazioni; 3) genetica quantitativa; 4) principi di base del miglioramento genetico degli alberi forestali.
1) RICHIAMI SUI PRINCIPI DI GENETICA DI BASE
a) Genetica mendeliana - Principi Mendeliani Incroci monoibridi: i principi della dominanza e segregazione; incroci diibridi: il principio dell'assortimento indipendente. - Estensione dei principi Mendeliani: dominanza parziale, codominanza, alleli multipli, epistasia, associazione, pleiotropia.
b) Genetica molecolare e citogenetica - Struttura degli acidi nucleici: DNA e RNA. - Il dogma centrale della biologia molecolare: replicazione, trascrizione e traduzione, il codice genetico. - Struttura e regolazione genica. - L'organizzazione del DNA nei cromosomi, mitosi e meiosi, teoria cromosomica dell'eredità, - Genomica. - Mutazioni. - Poliploidia.
- Cause e tipi di variabilità nei popolamenti forestali. 2) GENETICA DI POPOLAZIONI - Struttura genetica delle popolazioni: frequenze alleliche e genotipiche. - La legge dell'equilibrio di Hardy-Weinberg: assunzione e previsioni della legge; implicazioni della legge nelle popolazioni naturali. - Sistemi di accoppiamento e inbreeding: influenza dell'inbreeding sulle frequenze genotipiche, coefficiente di inbreeding, depressione da inbreeding negli alberi forestali. - Effetto dei fattori evolutivi (mutazione, migrazione, selezione e deriva genetica) sulla struttura genetica delle popolazioni degli alberi forestali.
3) GENETICA QUANTITATIVA - Caratteristiche dei caratteri quantitativi. - Analisi dell'entità e distribuzione della variabilità fenotipica per un carattere quantitativo; principi di statistica di base: campioni e popolazioni, distribuzioni di frequenza, media, varianza e deviazione standard, correlazione e analisi di regressione. - Stima del contributo relativo degli effetti ambientali e genetici sulla variabilità fenotipica osservata: ereditabilità e sua stima nelle specie forestali. - Stima del valore genotipico dei fenotipi parentali mediante analisi della progenie: valore riproduttivo e clonale; attitudine combinatoria generale e specifica. - Guadagno genetico o progresso genetico in un programma di miglioramento: guadagno genetico realizzato o stimato sulla base della teoria della genetica quantitativa; guadagno genetico clonale e riproduttivo. - Correlazioni genetiche: correlazioni tra due distinti caratteri, correlazione tra lo stesso carattere espresso a differenti età o fasi di sviluppo (correlazione tra la fase giovanile ed adulta); correlazione tra lo stesso carattere rilevato in differenti ambienti (interazione genotipo x ambiente).
4) PRINCIPI DI BASE DEL MIGLIORAMENTO GENETICO DEGLI ALBERI FORESTALI - Linee guida e principi per il miglioramento dei popolamenti forestali che si rinnovano naturalmente. - Scopi e struttura dei programmi di miglioramento degli alberi forestali. - Principali attività e tipi di popolazioni in un ciclo di un programma di miglioramento genetico degli alberi forestali. - Caratteristiche dei diversi tipi di popolazioni: popolazione di base, popolazione selezionata, popolazione riproduttiva, popolazione esterna. - Popolazione di propagazione: arboreti da seme clonali e arboreti da semi ottenuti mediante semenzali. - Obiettivi e funzione dei test genetici e loro importanza nelle fasi di un programma di miglioramento genetico.
( testi)
Appunti dalle lezioni e diapositive del corso fornite dal docente; Libro di testo: Forest Genetics (2009), Editors: White T.L., Adams W.T., Neale D.B. ISBN 9781845932855.
|
6
|
AGR/07
|
48
|
-
|
-
|
-
|
Attività formative caratterizzanti
|
ENG |
17926 -
Forest ecophysiology
(obiettivi)
OBJECTIVES: To know the environmental constrains of the main physiological processes, at tree and stand levels; to understand the acclimation responses to climate changes and to water scarcity; to gain familiarity with techniques and methodological approaches used in tree ecophysiology
EXPECTED LEARNING OUTCOMES knowledge and understanding • A scientific based knowledge and understanding of the acclimation and adaptation of plant traits as response to the environmental conditions. • An updated knowledge and understanding of the environmental drivers of carbon, water and nutrient cycles in plant and forest ecosystems. • A basic knowledge and understanding of the process-based models as scaling tools
applying knowledge and understanding - defining proper strategies and plans to improve the resilience of the forest ecosystems, also in a context of climate changes - defining monitoring plans to support the management of trees and forests - supporting screening strategies of resistant varieties and provenances of trees and shrubs, in reforestation programmes - supporting the sustainable management of forest ecosystems, analysing the main functional processes in response to the management practices
making judgements - analyse the results of survey and monitoring activities, providing scientific supported interpretation of the most probable cause-effects relationships - interpret results of trials and pilot systems for the management or the re-establishments of trees and forest ecosystems/plantations
communication skills - writes reports and prepares oral presentations on different subjects at professional and wide information levels - explain proposed solutions to specific management questions in a multidisciplinary context - presenting results of testing and experimental activities in scientific contexts
learning skills - reading and understanding the international scientific literatures in the sector of forest and environmental relationships - new methods and tools for the functional analyses of plant and forests
-
DE ANGELIS Paolo
( programma)
PROGRAMME TOPICS
Morphologic and functional features of the main organs of forest trees: adaptation and acclimation
Growth and development of forest trees and responses to environmental factors and stresses
Tree architecture and forest microclimate
Transpiration, water relations and stress
Photosynthesis, respiration and carbon cycle of forest ecosystems
Quantitative methods for forest ecophysiological analyses (lab)
Introduction to ecophysiological process based mathematical models
( testi)
Textbooks
Thomas P. Trees: their natural history. Cambridge University Press, 2000.
Hirons A. D., Thomas P. Applied tree biology Wiley, 2018.
Hans Lambers, F. Stuart Chapin III, Thijs L. Pons. Plant Physiological Ecology. Second Edition. Springer 2008.
|
6
|
AGR/05
|
40
|
8
|
-
|
-
|
Attività formative caratterizzanti
|
ENG |
17927 -
Monitoring soil quality
(obiettivi)
Course aims:
1. To present soil as a living, dynamic, vulnerable resource 2. To introduce the concept of soil quality, health and security 3. To present a basic set of indicators to monitor soil quality 4. To suggest how to choose the right indicators in relation to specific case studies in forest environment
-
MOSCATELLI Maria cristina
( programma)
I. Introduction Soil and its different definitions Role and position of soils in terrestrial ecosystems Ecosystem services and soil functions Concepts of chemical and biological fertility
II. Indicators of soil quality and health Review of concepts of soil quality, soil health and soil security. Rationale for the use of soil indicators and specific requisites. Physical, chemical and biological indicators. Static and dynamic descriptors. Pools and processes. Main bioindicators: definitions and functions. Soil health and resilience Soil quality indexes
III. Soil organic matter (SOM) Main features, composition, physical, chemical and biological properties. SOM as a complex indicator of soil quality. Quantity and quality of SOM Role of SOM to maintain soil fertility, to promote carbon storage and as the site of tight interactions with soil biota. Pools of ecological relevance.
IV. Soil microbial biomass Definition, composition and main characteristics Factors influencing microbial biomass development. Trophic conditions and adaptation strategies. Functions of soil microrganisms and their specific role within nutrient cycles. How to study microbial biomass. Quantitative and qualitative approaches. FE method, SIR, multi-SIR, CLPP techniques. Concepts of genetic and functional diversity. Microbial indexes: the microbial quotient, significance and measurement.
V. Mineralization processes (C & N mineralization) Significance of mineralization processes to guarantee soil fertility C mineralization. Soil respiration and its components: definition and measurement Microbial indexes: the metabolic and the mineralization quotients: significance and measurement N mineralization. Mineralization potential and in situ measurements
VI. Soil enzymes Definitions and main features. Notes on enzyme kinetics: general infos. Localization and origin of soil enzymes. Classes of soil enzymes. Functions and stability of enzymes in soil. Immobilized enzymes. Intra- and extracellular enzymes. Determination of enzyme activities by means of different methods : colorimetric and fluorimetric techniques. Specific activities. Real and potential activity.
VII. Drivers of global soils change: Natural and anthropogenic pressures (climate changes, land use changes, pollution) Threats to soil functions Soil degradation, soil loss
VIII. How to plan a monitoring activity WWWHWWW scheme. Experimental design, sampling schemes. How to choose the right indicators. New sets of indicators. Presentation of specific case studies in forest soils
Laboratory classes (if allowed) 1 - Determination of soil respiration 2 - Determination of acid phosphatase activity
Working group Reading and discussion of recent literature
( testi)
Texts 1) Brady NC, Weil RR, 2016 The nature and properties of soils, XV Ed. (Chapt. 1, 11, 12, 20), XIV Ed.(Chapt. 2, 12, 13, 21) or XIII Ed. (Chapt. 1-11-12-20)(University Library)
2) FAO and ITPS., 2015. Status of the World’s Soil Resources (SWSR) – Main Report. Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils, Rome, Italy (selected chapters)
3) NERI Technical Report No. 388, 2002 Microorganisms as indicators of soil health,
4) European Commission - DG ENV, Report 2010 Soil biodiversity: functions, threats and tools for policy makers,
5) Gardi C., Jeffrey J. , 2009 Soil biodiversity, JRC Scientific and Technical Reports
6) Shukla G., Varma A., 2011, Soil enzymology –Springer Verlag (selected chapters)
7) Course slides
|
6
|
AGR/13
|
44
|
4
|
-
|
-
|
Attività formative caratterizzanti
|
ENG |
118981 -
Monitoring terrestrial ecosystems carbon cycle (ICOS)
(obiettivi)
Il corso fornirà le conoscenze necessarie per progettare e implementare un sistema di monitoraggio degli scambi ed il sequestro di carbonio in funzione dell’ecosistema studiato e della domanda/applicazione di ricerca. Fornirà anche le conoscenze per trovare i dati e le informazioni da fonti esistenti e valutarli in modo critico. RISULTATI DI APPRENDIMENTO ATTESI. 1) Conoscenza e comprensione: alla fine del corso lo studente avrà gli strumenti necessari per definire la migliore strategia per monitorare il ciclo del carbonio degli ecosistemi, le diverse opzioni disponibili e le conoscenze generali per monitorare lo scambio di carbonio degli ecosistemi terrestri e di altri gas serra (GHG) con l'atmosfera nel contesto del cambiamento climatico. 2) Conoscenze applicate e comprensione: il corso fornirà gli strumenti cognitivi necessari per consentire la scelta delle tecniche più adatte per lo studio del bilancio del carbonio e degli altri gas serra di un ecosistema e le opzioni per raccogliere, organizzare, depositare e analizzare correttamente le misure. 3) Formulare giudizi: una volta terminato il corso, lo studente avrà gli strumenti per giudicare e decidere in modo autonomo su questioni relative alle interazioni tra clima, atmosfera ed ecosistemi nel contesto dello scambio e del sequestro del carbonio e sulle opzioni disponibili per la quantificazione e il monitoraggio dello scambio di gas serra negli ecosistemi naturali. 4) Capacità di comunicazione: al termine del percorso formativo lo studente dovrà dimostrare di saper comunicare e discutere in modo conciso ma efficace le tematiche affrontate durante il corso, dimostrando capacità di integrazione delle conoscenze acquisite. 5) Capacità di apprendimento: al termine del corso lo studente dovrà aver appreso i concetti e le tecniche affrontate e saperne definire limiti e fondamenti.
-
PAPALE Dario
( programma)
1. GHGs cycles, atmosphere and climate change 2. Monitoring carbon stocks changes in biomass and soil with inventory approaches 3. Monitoring canopy productivity and dynamics through periodic measurements of stock changes 4. Monitoring GHGs exchanges using chambers and practical applications 5. Monitoring GHGs exchanges using the Eddy Covariance technique: from setup to results (theory, sensors, fluxes calculation and correction, gapfilling, partitioning, evaluation) 6. Micrometeorological measurements and link to carbon and other GHGs monitoring 7. Remote sensing, phenology and Sun Induced Fluorescence 8. Global monitoring networks, data access and analysis 9. Data management, organization and interpretation
( testi)
Burba, George. (2013). Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications: A Field Book on Measuring Ecosystem Gas Exchange and Areal Emission Rates. 10.13140/RG.2.1.4247.8561.
Aubinet M., Vesala T., Papale D (2012). Eddy Covariance - A Practical Guide to Measurement and Data Analysis. Springer, ISBN: 978-94-007-2351-1
The ICOS Instructions for Ecosystem measurements: http://www.icos-etc.eu/documents/instructions
|
6
|
AGR/05
|
24
|
-
|
24
|
-
|
Attività formative caratterizzanti
|
ENG |
118982 -
Remote sensing in forest resource management
(obiettivi)
The course is designed to give an introduction on how to generate information from remote sensing data and how to analyse these data in a geographic information system, in order to map forest resources and monitor relevant changes in forest canopy cover. On successful completion of the course students are capable to - identify the practical applications of various remote sensing data sources (satellite, airborne and drone) to forest resources monitoring issues; - employ basic image classification techniques; - apply the most common image classification techniques to basic forest cover mapping and change detection problems, using QGIS raster image processing and classification tools.
-
BARBATI Anna
( programma)
What is remote sensing and what is it used for? -Optical Image Formation Process: at-Sensor - Radiance and Reflectance -Spectral response of main land cover classes -Vegetation indices
Type of remotely sensed data -Satellite, airborne and drone platforms -Multispectral and hyperspectral sensors Resolution -Image data preprocessing by data providers
Geodata handling and image data pre-processing in GIS -Field work: acquisition of reference data -Data preprocessing: image data enhancement -Creating a geographic database: digitizing and managing coordinate systems
Remote sensing data applications to forest resource mapping -Introduction to digital image processing techniques -Photointerpretation for land cover and forest type mapping -Automated classification of satellite images -Forest change detection
( testi)
- Franklin SE (2001). Remote Sensing for Sustainable Forest Management. CRC Press, Taylor and Francis - Remote Sensing and Image Interpretation (2015)- T.M. Lillesand, R.W. Kiefer, J.W. Chipman, Wiley International Edition
|
6
|
AGR/05
|
24
|
-
|
24
|
-
|
Attività formative caratterizzanti
|
ENG |